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Abstract. An existing family of genetic algorithms, which were designed with discrete and 
binary variables in mind, has been extended in this paper to handle truly continuous variables. 
Its close relationships with Monte Carlo methods, the simplex method, simulSed annealing 
and other direcc i.e. derivative-free global optimization algorithms creates a really versatile 
tool for various difficult optimization tasks. The main area of its application should be the 
reconsuuction of unknown, continuous, and possibly smooth. distributions of various physical 
quantities derived from the experimental data. Among them might be. grain-size dishibution 
for parficulate magnetic materials derived from isothermal magnetization C U N ~ S .  distribution of 
relaxation times derived from luminescence experiments or chemical kinetics (inverse Laplace 
transform), and other large-scale numerically hard problems. One such problem. namely solving 
for the grain-size distribution for pardculate magnetic materials, is presented as a working 
example and treated in detail. Applications of this algorithm should be stable demnvolution of 
various spectra with a variable window and non-parametric curve smoothing with a non-smooth 
objective function. 

1. Introduction 

The genetic algorithm, also known as evolutionary strategy, was probably first introduced in 
1975 by Holland [I]. Since then it has gained much attention among researchers conducting 
largescale optimization calculations. Its original form, designed only for binary variables, 
has been extended to handle variables which may take more than two discrete values. 
Recently, several papers, for example [Z. 3,6], were published utilizing the genetic algorithm 
working with a discretized form of continuous variables. More applications of this approach 
can be found in [3-121. Other reported areas include: image processing, job scheduling, 
pattern recognition, design of integrated circuits, modelling and system identification, etc. 
A good tutorial on various aspects of genetic computing was recently given by Lucasius 
and Kateman 1131. 

Here we only briefly summarize the algorithm in question. We will not discuss many 
important, but rather technical, details of the implementation, since those are usually 
problem- and computer-language-dependent. Their discussion can be found in [ 141 and 
references therein. Our main goal is to introduce and familiarize the reader with the 
terminology used thoroughout the rest of paper. 

The problem. Given a (real) function f ( x , ,  . . . , X N )  of N variables find the set 

{ X I , .  . . , X N  : (xi = 0 v x j  = 1)Vl < j < N }  (1) 
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which minimizes a given objective function f .  
We will seek candidates for the final solution in the form of strings similar to 

oooiololoiilioooililo ... iiOOili0ili (2) 
where each position assumes the value of the corresponding unknown (0 or 1). We will 
refer to such a string as a chromosome or animal, and to its single element as a gene. The 
objective function, f ,  is usually called the fitness function or just fitness. The first step of 
the genetic algorithm is the creation of several (usually 50-500) trial solutions of this form 
comprising the initial population (‘far”). Many authors recommend completely random 
strings as members of the initial population. Now we allow this population to evolve, 
generation after generation. Evolution is governed by the Darwinian rule ‘survival of the 
fittest’. 

The following two steps are repeated to create a new generation from the previous one: 

selection of two parents (the better fitted a given chromosome is, the higher chance it 
has to be selected as a parent); 
the decision of whether selected parents-to-be cross or not. If not, then they are simply 
copied to the new generation without any changes, otherwise they produce two offspring 
chromosomes which, after evaluation of their fitness, enter the new generation. 

The decision on whether or not the given chromosome will be allowed to replicate, may be 
made after investigation of the inequality proposed in this paper, to the author’s knowledge, 
for the first time: 

where t is a random number drawn from uniform dishibution on IO, I], f is the value 
of fitness for a given chromosome, Mf is the median of fitness calculated for the entire 
population, and Sf is the standard deviation of the population’s fitness from the median. 
The chromosome may become a parent, if the above inequality holds. 

Let us make two remarks concerning the right-hand side of inequality (3). First, it is 
the familiar Fermi-Dirac distribution with the following correspondence relations: 

f -fitness (or better: misfit, since usually we want to minimize f )  of a given chromosome 
-energy of individual particle from the ensemble 

Mr-median of the population’s fitness 
-Fermi level (chemical potential) 

S, -standard deviation of the population’s fitness from the median 
-absolute temperature. 

Every chromosome with fitness equal to the Fermi level has a 50% chance of being 
selected as a parent. We prefer to use the median value of fitness in lieu of the usual 
arithmetic average. There is a good reason for doing so: some offspring and mutants 
reach exceptionally high values of f ,  which very seriously affects the average value for 
the population, while the median, although more diRicult to obtain, is insensitive to such 
outliers. 

The concept of temperature, already considered by some authors [3,6], in the context of 
Gibbs partition function, is also very useful. The introduction of this parameter makes the 
algorithm have some of the properties of the simulated annealing Monte Carlo procedure, 
which has proved to be very efficient in many global optimization problems, but without 
the need for a special cooling schedule. In our model, the temperature is a self-adjusting 
parameter. 
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The second remark concerns the shape of the Fermi-Dirac distribution. It is exactly 
the sigmoid response function modelling the behaviour of a single neuron, like those used 
in artificial neural networks. Perhaps it is the shape of the Fermi-Dirac distribution which 
makes the two very different entities, neural networks and genetic algorithms, so intelligent. 

The need for stretching or contracting the fitness functions before they are used in the 
selection process is apparent. Some authors [3] argue, that it is necessary to exaggerate 
the differences between the fitness functions to help the process discriminate between 
trial solutions with slightly different fitness values. Here we are talking about well fitted 
chromosomes, with almost equal fitnesses. According to commonly held belief, this kind 
of transformation of fitnesses to probabilities should improve the performance of genetic 
algorithms. On the other hand, the purpose of mutations is to help create quite new trial 
solutions by making big jumps in the search space. For this purpose, it would be very 
desirable not to differentiate various poorly fitted mutants too much. Our proposal, given 
in inequality 3, although heuristic, seems to fulfill both requirements. The concept of a 
Fermi level, crucial here, comes from nature, namely from analogy with the BCS theory of 
superconductivity and transport properties of semiconductors. 

After the new generation (with the same number of members as the old one) has been 
created, the time comes to introduce mutants. Mutation is a relatively rare event, in which 
a randomly chosen gene in a randomly chosen chromosome is inverted, i.e. becomes zero, 
if it was one, and vice versa. The fitness of a mutated chromosome has to be evaluated 
again, of course. The lack of mutations might lead to the population consisting of identical 
animals, and thus be unable to create new trial solutions. 

The evolutionary process is continued until the average fitness reaches the desired value, 
or the prescribed number of generations has been explored or some other convergence 
criterion is fulfilled. The best clvomosome so far is usually considered to be the final result 
of the calculations; in some cases, however, the (weighted) average of the entire population 
may be preferred. 

2. Description of the continuous algorithm 

There are two basic differences between discrete and continuous versions of the genetic 
algorithm. One is the way the chromosomes are combined to produce offspring and the 
other one concerns the mechanism of the mutations. In the simplest, binary, version we 
have (the vertical line marks the crossover point) 

00101001l11001111011 B 01110110110111011001 
I 

l00l01001111001011001l 
olllollollolllllloii 

I 

~01110110i101i1111010~ 
I t 

- first parent 
- secondparent 

- first offspring 
- second offspring 

- mutated second offspring 
- mutated gene 

(4) 

i.e. the heads of the new chromosomes are identical with those of their respective parents, 
while the tails are interchanged. The crossover point is selected at random, individually 
for each pair of parents. The mutant differs in at least one gene from its originator. The 
position of this gene is also chosen at random. 
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The process of reproduction shown above may be described in terms of ‘mixing’ 
(characteristic, weighting) function, w. In the discrete case, the domain of the mixing 
function is a subset of natural numbers directly related to the ordering of unknowns, In the 
classical, binary version of the genetic algorithm there are only two allowed values for the 
mixing function, namely 0 and 1, and the function itself is monotonous, i.e. after a series 
of nulls a sequence of ones follows (or reversely). The reproduction process may then be 
formally written as 

(5) 
o l ( j )  = w ( j ) p l ( j )  + [ I -  W)lpz( i )  
o d j )  = [1 - w ( i ) l p ~ ( j )  + w ( j ) p z ( j )  

where PI(.) and p 2 ( . )  are parents, q(.) and oz(.) are offsprings and the index j numbers 
the unknowns (genes). 

For the continuous case we can afford much more sophisticated mixing functions. 
The function w should be continuous and its values should cover the range [O,l] ,  but 
monotonicity is not required. Moreover, if the mixing function is smooth, and the initial 
population consists of smooth animals only, then all the intermediate and final populations 
will contain only smooth animals too. This feature is extremely desirable when dealing 
with some large, ill-conditioned optimization problems. By such we mean here, most of all, 
but not only, finding unknown distributions, in discretized form, derived from experimental 
data ab initio, i.e. with only very general assumptions-such as the smoothness of solutions. 
Assuming complete independence of all unknowns in such a problem normally leads to 
‘noisy’ or discontinuous results, or unstable behaviour of the minimization procedure, unless 
special precautions are taken. These are usually based on some kind of ‘regularization’, 
or extra constraints, introduced more or less ad hoc, and sometimes quite arbitrarily. Our 
approach allows us to think about solutions to this kind of problem as tabulated functions, 
treated as single objects, rather than sets of many unknown numbers. Our point will be 
explained more fully in the section ‘an example’. 

As an example of continuous numbering of unknowns consider the problem of finding 
the distribution of relaxation times in a luminescence experiment. Looking for solutions 
in the form of a histogram, we have to find the shares of many relaxation times in the 
entire process, i.e. our unknowns are the contents of the histogram’s bins. The bins, in 
turn, are ordered in a natural way: every one is centred on a specific relaxation time. Of 
course, there is no necessity to have the bins of equal width (evenly spaced). They may be 
spaced logarithmically, or even quite irregularly, on the real axis. So the ordering variable, 
here called the ‘relaxation time’, r ,  may be used to number the unknowns and constitute 
the domain of mixing functions for further calculations. Alternatively, one may look for 
solutions of this particular problem in terms of properly spaced decay constants. This 
problem (inverse Laplace transform) has been known, for more than one hundred years, as 
a very difficult and ill-conditioned one, even when constrained to non-negative amplitudes. 

Suppose, we are looking for the histogram covering relaxation times in range [TAn, r,,,=], 
where the bounds rdll and T,, should be estimated independently from available data. 

A suitable mixing function might have the shape 

where 5 is a random, but fixed, number evenly distributed over [0,2n], A and B are positive 
constants and tanh denotes the hyperbolic tangent function. 

An example of continuous parents and offspring, together with the mixing function, 
with A = 7.254 and B = 1 is given in figure 1. 
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Figure 1. Two pment chromosomes and their offspring produced by the described algorithm. 
The animals consist of 512 genes each. 

Other, simpler mixing functions may be preferable, but this one exhibits interesting 
properties: it becomes more and more similar to a square wave when the value of the 
parameter A is increased. This shows that a smooth transition is possible from the continuous 
to the discrete version of the algorithm. On the other hand, if constant B >> 1, then 
w becomes highly oscillatory, and the algorithm resembles more and more the classical, 
memoryless Monte Carlo method. On the other hand, decreasing this factor below unity 
(so the weighting function is almost constant) makes the algorithm look similar to the well 
known simplex method. The classical, discrete case, presented earlier, corresponds to B = 1 
and a very high value of A.  Using a periodic function, Iike sin, has this effect, that all 
genes are treated equally, regardless of their location within the string of unknowns. The 
case of the integer parameter B ( B  = 2 is most often used) is well known in the literature 
as a ‘multiple crossover point’. In the continuous case, however, there is no need to restrict 
the value of parameter B to integers only. 

Note, that the proposed method of breeding new animals from the previous generation 
has a very desirable feature of generating smooth offspring from smooth parents. 

The most difficult part in transforming the discrete algorithm into its continuous 
counterpart is the mutation mechanism. In the discrete version there is always a chance of 
reintroducing the gene, which accidentally got lost during the evotution, or was absent in 
the initial population. This feature is much more difficult to implement in the continuous 
version but-perhaps-it is not necessary. The continuous version of the mutation process 
is more difficult but also offers more flexibility. The difficulty lies in the simple fact, 
that any modification of a single gene will immediately destroy the continuity of the trial 
solution. The effect of mutation must somehow be distributed over neighbouring genes. 
Therefore one should consider a kind of ‘plastic deformation’ of an entire animal as a 
way of introducing the mutation process. An applied modification may be concentrated in 
the selected part of an animal or be visible in its whole body. This proposition is in full 
accordance with our experience from the biological world: some mutants have only the 
colour of their eyes changed, while others may lack the pigments in their entire skin. 
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Figure 2. Various smooth mutations of the +mal, marked as offspring no 2 in figure I;  
presentation of local versus global effect of mutation (not to sale): (a )  original animal before 
muration. (b) multiplying every gene by a shifted Gaussian function with positive awlitude- 
an extra peak is gencmed. (c) multiplying every gene by a shifted Gaussian function with 
negative amplitude. localized as in wse (b), splitting of existing peak occm, ( d )  multiplying 
by a quadratic function-all peak parameters change, moa notably their positions. (e) every 
gene nonlinearly ansformed by an exp function-peak positions are preserfed but widths and 
amplitudes are changed. 

Generally we can describe the mutation of animal m as 

= r ( m ( j ) )  (7 1 
where m ( j )  and m' ( j )  denote the gene j before and after mutation, respectively. 
Transformation T may be defined in a variety of ways provided it is smooth. As an example, 
consider the animals, which represent trial solutions of the spectral deconvolution problem, 
say in the visible part of the electromagnetic spectrum. Valuable 'pure' transformations 
could be 

shifting peak positions, 
changing the peak amplitudes, 
baseline shifts. 
While the first, second and third transformation may be regarded as more or less 

localized, the last one has a global character. In practice, one will select transformations 
of a simple analytical shape but of mixed character, i.e. changing several features at once. 
A good representative of such a transformation is multiplication of the trial spectrum by a 
quadratic function. Examples of various kinds of mutations are presented in figure 2. 

3. Applications 

The algorithm is well suited for problems with many unknowns, which are ordered in some 
natural way, and therefore are nor 'independent', but forming a continuou-nd perhaps 
smooth-curve. All kinds of spectroscopical problems, as well as others not requiring 
highly precise solutions but rather the shape of the curve may be attacked with this method. 

decreasing (or increasing) the width of spectral peaks, 
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The main area of applications should be the reconstruction of unknown continuous, 
and/or smooth, distributions of various physical quantities derived from the experimental 
data. Among them are: grain-size distribution for particulate magnetic materials derived 
from isothermal magnetization curves (treated in detail in the next section, with early 
results presented in [15.16]), distribution of relaxation times derived from luminescence 
experiments or chemical kinetics (inverse Laplace transform), distribution of hyperline fields 
deduced from Mossbauer spectra to name a few. It should also be possible to find (complex) 
kernels of some integral, physically important, transformations like the one used in Kramers- 
Kronig analysis of optical spectra. 

Other large scale numerically hard problems can be treated too. As an example we 
may take stable deconvolution of various wideband electromagnetic (NMR, ESR, IR, optical, 
IJV, gamma ray), acoustic, chromatographic and other spectra with a window function 
varying along the spectrum, i.e. with a non-constant resolution. This kind of spectra cannot 
be processed correctly with the available deconvolution procedures utilizing the Fourier 
transform technique or equivalent iterative approaches based on the convolution theorem. 

Perhaps, not least, application of this algorithm might be the non-parametric curve 
smoothing in an ordinary least-squares sense or with a non-smooth, robust objective function 
like, for example, the least (median of) absolute deviations. 

4. An example 

The described algorithm has been applied to the following problem: given the experimental 
data on isothermal magnetization of a nanocrystalline sample, find the distribution of 
magnetic nanocrystallites, The experimental data, selected from many sets, and consisting of 
191 points, are presented in figure 3. The initially amorphous Fe&r&ulNb3Si13Bg metallic 
glass, when annealead in a controlled way, develops an ultrafine crystalline structure and 
exhibits superparamagnetic [ 171 behaviour at elevated temperatures, in this case above 
523 K [18]. The temperature and magnetic-field dependence of magnetization for a 
superparamagnetic sample can be written as a sum of the Langevin functions 

where nj  is a number of single domain particles with magnetic moment equal to pj per unit 
volume, ks is the Boltzmann constant and H is the magnetic field strength. 

The distribution nj(pj) is the object of interest in this example. We started searching 
this distribution with determination of the maximum value of magnetic moment per single 
crystallite, p = pm. It was calculated from a M ( H ,  T) /aHIu,o and later increased 20%. 
The interval [0, pLma.] was then subsequently divided into 99 channels of equal width. The 
initial population was formed by the set of histograms, of bell-like shapes, given by the 
formula 

where j is the channel number 1 . . .99, corresponding to pj, j k  is the centre of kth animal 
(= k g )  and U ,  closely related to the width of distribution, is a real number from the interval 
[ 1, IO]. The centres of the animals were evenly distributed in the space of magnetic moments 
in order to have a chance for every possible value to be used, and perhaps eliminated, by 
the algorithm. As will be seen later in this section, it is impossible to create new genes, 
either by the cross-over process or by the mutation mechanism, in positions where they 
were absent in the initial population. 
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0.10 
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-0.00 

-0.06 i 
Magnetic field [Oe] 

Fiyre 3. Magnetization curse (emu versus magetic field strenm,gh) of a nmw~stalline sample 
i.Fe&sCuiNc$ir,Bs) taken at 723 K using vibrating sample magnetometer. There is no 
visible hysteresis, since the sample is in the superpamagnetic state. 

The best results (best fitted animals) were obtained with U = 3, but for any value of U 

the solutions had the same general shape, differing only with resolving power. There were 
only 64 members of the population. The normalization constant A was choosen in such a 
way to have (in given temperature) 

where H,. < 0 and Hmvl > 0 are the minimum and maximum magnetic fields used during 
the experiment, respectively. The integral on the right-hand side was calculated only once 
for every data set to save processing time. The normalization was repeated for every new 
animal entering the population. Such a procedure considerably improves the ability of the 
algorithm to quickly identify and explore only the relevant parts of the search space- 
a property which is inherent to all genetic algorithms-thus significantly decreasing the 
computation time. 

The objective function, F (after fitness), was constructed as 

F = l A 4 d c ( I f k *  T )  - MUP(Ifk, n. (11) 
k 

We prefer to use the sum of absolute differences between experimental and calculated 
(simulnted) values, because it is more robust, i.e. more immune to random experimental 
errors, than the commonly utilized x 2  criterion. Lack of smoothness in our objective 
function is meaningless, since the algorithm compares only the values of the function itself, 
not its derivatives. The results obtained for good quality (i.e. noiseless) data using our 
objective function and the xZ criterion are practically identical, while for noisy data our 
function performs better. 

The result of calculations for the data set from figure 3 is shown in figure 4. Instead 
of presenting the results in the form of a histogram we have drawn a full curve connecting 
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Figure 4. Computed distribution of nanocrystallites versus theheir ‘magnetic’ size expressed in 
Bohr magnetons. 

the consecutive points, as a guide to the eye, in order to underline the smoothness of 
the distribution. Essentially, two peaks are visible. Their imperfections probably have no 
physical meaning-these should be attributed to the premature end of the calculations, or to 
unfortunate mutations, or both. The number of crystallites with various magnetic momen& 
is reasonable (the sample mass was a few mg) and corresponds well to the so-called packing 
fraction, p xz 1896, determined independently from x-ray analysis. The packing fraction tells 
us how large the share of magnetic nanocrystalline material volume is within the sample. 
Two important conclusions can be drawn from these results. 

The distribution of crystallite sizes (‘magnetic’ or physical) is not unimodal, contrary 
to the common assumption, that it is log-normal. It is easy to check that, at least 
in our case, the shares of both groups of crystallites in the total magnetization of 
the sample are approximately equal to each other. It may appear that assuming only 
two kinds of magnetic objects are present in the sample will greatly simplify further 
calculations involving this distribution without sacrifice of agreement between theories 
and experiments. 
The ratio of volumes between two groups of crystallites is roughly 5:1, i.e. the ratio of 
their diameters is -1.7:l (we neglect here the possible differences in magnetic moments 
of Fe ions belonging to the surface of crystallites and those located inside the grains). 
This fact easily explains the high values of the packing fraction, in exceess of 70%, 
claimed by some authors (see, for example [19]). Having at hand two sizes of more or 
less spherical objects, we can fill the space even more densely than is possible in the 
regular HCP structure. 

The probability of the cross-over between two selected parents was fixed at $. This 
means that, on average, a third part of the old population was simply transferred, without 
any changes, to the new generation. The probability of mutation was set to such a value 
as to expect one mutated animal in each generation. We use two kinds of mutations, with 
equal probability: local and global; both based on a scheme presented in (7). Local mutation 
effectively changes only a part of the chromosome in question, while a global one affects the 

0 
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entire animal. Local mutation is performed by multiplication of the animal by the function 

I +exp[-(j - j o ) ' / ( 2 u Z ) J .  ( 1 2 )  

where j numbers genes, jo is the mutation centre, and U is related to the mutation range. 
Both j ,  and U are random numbers, with U 3 5. The upper sign corresponds to enhancing 
mutated genes, while the minus sign corresponds to their partial annihilation. 

Global mutation is based on the factor 

exp [ i ( I m p  31 
where M = maxj Im(j ) l ,  applied to the entire animal, gene by gene. Similarly to the 
previous case, one of the signs (upper) corresponds to exponential stretching, while the 
other one (lower) is responsible for attenuation of the most pronounced genes. 

We also decided to use the so-called elitist strategy-in its simplified form. An elitist 
shategy means nothing else but the warranty of survival for the best animal in case it is 
missing in the next generation and no better trial solution has been found. Our simplification 
of this strategy is based on comparisons between fitnesses of animals only, rather than on 
time-consuming immediate checking of their detailed shapes. The last approach is often 
used by those who deal with discrete problems. 

The calculations are stopped when either of two conditions occurs: 

either the inequality: 

lmedian fitness - best fitness1 < clbest fitness1 (14) 

is satisfied with E = (preferred stopping criterion), or 
no improvement could be found after prescribed number of generations (64 in our case). 

. b ~ - - ~  20 " " . . ' ' '  8'0 ' ' ' * - " . '  rho ' " ' . ' ' ' '  d o  ' . " " " '  zbo 
Generation (epoch) 

Figure 5. Typical course of calculations: full curves-best and poorest animals. broken curve- 
median value in the population. 11 is clear that, aner some SO generations. the population 
remains concentrated in a single domain (niche) of search sp3ce. The 'noise' is a manifestation 
of mutations. Note lhc logarithmic scde. 
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The first condition is satisfied when the population becomes homogeneous, in other 
words, when all the animals are almost identical, and the chances for significant 
improvement diminish. The second condition assures termination in all other cases. 

Figure 5 shows typical history of a single run of algorithm. Usually 30-60 generations 
are sufficient to get quite satisfactory results. This may be expressed in terms of some 1300- 
2500 evaluations of the objective function. It is a far smaller number than that used by 
the blind Montecarlo-type algorithms and even by simulated-annealing-type algorithms. 
The number of objective function evaluations depends very weakly on the number of 
unknowns searched, contrary to many deterministic algorithms, which usually require - N2 
function evaluations. 1300-2500 evaluations is typical for these algorithms when dealing 
with problems involving only 5-15 independent unknowns. The memory requirements are 
of the same order of magnitude as for multiple start-point Montecarlo-type algorithms, 
deterministic simplex method or Newton/Marquardt minimization tools. 

5. Conclusions 

The presented algorithm is intuitively simple yet efficient, powerful and versatile. Its basis 
is formed using several well founded concepts taken from biology and statistical physics, as 
well as from other derivative-free optimization algorithms. Applications of the continuous 
evolutionary algorithm seem even broader and more important for physicists, than those 
of its discrete version. Although, at least in its present form, the algorithm cannot supply 
analytical solutions, nevertheless numerical solutions of high quality-like the one shown 
in the previous section-will be certainly appreciated by those who have to deal with noisy 
experimental data. Its ability to generate continuous and smooth solutions, for numerically 
hard problems, cannot be overemphasized. The algorithm thus provides a very attractive 
alternative to assess many variational problems. Also, some untractable problems may now 
be solved in an elegant and mathematically correct way. 
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